Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K-12 (JM109 and MG1655) and E. coli B (BL21)
نویسندگان
چکیده
BACKGROUND The effect of high glucose concentration on the transcription levels of the small RNA SgrS and the messenger RNA ptsG, (encoding the glucose transporter IICBGlc), was studied in both E. coli K-12 (MG1655 and JM109) and E. coli B (BL21). It is known that the transcription level of sgrS increases when E. coli K-12 (MG1655 and JM109) is exposed to the non-metabolized glucose alpha methyl glucoside (αMG) or when the bacteria with a defective glycolysis pathway is grown in presence of glucose. The increased level of sRNA SgrS reduces the level of the ptsG mRNA and consequently lowers the level of the glucose transporter IICBGlc. The suggested trigger for this action is the accumulation of the corresponding phospho-sugars. RESULTS In the course of the described work, it was found that E. coli B (BL21) and E. coli K-12 (JM109 and MG1655) responded similarly to αMG: both strains increased SgrS transcription and reduced ptsG transcription. However, the two strains reacted differently to high glucose concentration (40 g/L). E. coli B (BL21) reacted by increasing sgrS transcription and reducing ptsG transcription while E. coli K-12 (JM109 and MG1655) did not respond to the high glucose concentration, and, therefore, transcription of sgrS was not detected and ptsG mRNA level was not affected. CONCLUSIONS The results suggest that E. coli B (BL21) tolerates high glucose concentration not only by its more efficient central carbon metabolism, but also by controlling the glucose transport into the cells regulated by the sRNA SgrS, which may suggest a way to control glucose consumption and increase its efficient utilization.
منابع مشابه
The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth
BACKGROUND E. coli B (BL21), unlike E.coli K-12 (JM109) is insensitive to glucose concentration and, therefore, grows faster and produces less acetate than E. coli K-12, especially when growing to high cell densities at high glucose concentration. By performing genomic analysis, it was demonstrated that the cause of this difference in sensitivity to the glucose concentration is the result of th...
متن کاملInhibition of AckA and Pta Genes Using Two Specific Antisense RNAs Reduced Acetate Accumulation in Batch Fermentation of E. coli BL21 (DE3)
Expression of foreign proteins in E. coli is normally inhibited by exogenous production of acetate. To overcomethis problem, various strategies have been proposed and tested to reduce the extent of acetate accumulation.Although these strategies can improve the outcome, the implementation of their proposed techniquesis not practical. Because to achieve optimal results, it requi...
متن کاملGlucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses.
In a series of previous reports it was established by implementing metabolic flux, NMR/MS, and Northern blot analysis that the glyoxylate shunt, the TCA cycle, and acetate uptake by acetyl-CoA synthetase are more active in Escherichia coli BL21 than in Escherichia coli JM109. These differences were accepted as the reason for the differences in the glucose metabolism and acetate excretion of the...
متن کاملBioinformatic Analysis of L-Asparaginase II from Citrobacter Freundii 1101, Erwinia Chrysanthemi DSM 4610, E. coli BL21 and Klebsiella Pneumoniae ATCC 10031
Backgroung and Aims: L-Asparaginase II is a cornerstone of treatment protocols for acute lymphoblastic leukemia. Only asparaginase II obtained from E. coli K12 and Erwinia chrysanthemi have been used in human as therapeutic drug. The therapeutic effects of asparaginase II from E. coli K12 and Erwinia chrysanthemi is accompanied by side effects. It is desirable to search for other asparaginase I...
متن کاملComparative possession of Shiga toxin, intimin, enterohaemolysin and major extended spectrum beta lactamase (ESBL) genes in Escherichia coli isolated from backyard and farmed poultry
The present work was conducted to compare the occurrence of Escherichia coli possessing virulence and ESBL genes in backyard and farmed poultry. Three hundred and sixty samples from the poultry kept in backyard system and 120 samples from the farmed birds were collected from West Bengal, India. Among the E. coli isolates of backyard poultry (O2, O10, O25, O55, O60, O106, UT), none of them posse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2010